
Standardize persistence and APIs
while keeping developers in full control.

JoinedWorkz is a model-driven toolchain that
lets your teams describe persistence, APIs and
controllers in a domain-specific language (DSL) and
generate consistent, standard-compliant code –
while keeping business logic fully in the hands of
developers.

In larger organizations with several teams and
services, the same issues keep appearing:

	 Architecture drift:
	 �Each team interprets guidelines differently.
Over time, patterns diverge and systems
become harder to maintain.

	 Repetitive boilerplate:
	 �Persistence, APIs and controller layers are
implemented again and again, with only minor
variations.

	 Guidelines not consistently applied:
	 �Architecture rules live in Confluence or
internal portals, but under time pressure they
are partially ignored or interpreted loosely.

	 API-first initiatives that stall:
	 �OpenAPI specs and documentation drift away
from the implementation and lose trust.

	 Slow onboarding:
	� New developers struggle to understand how
entities, APIs and conventions fit together
across services.

JoinedWorkz is a model-driven generation toolchain for APIs and backend systems with four main
building blocks:

1.	Textual DSL
	 �A domain-specific language to describe domain entities, persistence aspects, APIs and
controllers in a Git-friendly, reviewable form.

2.	Standalone modeling studio
	 �A dedicated modeling tool that runs alongside your IDE of choice, used to edit, navigate and
validate models.

3.	Standard and custom generators
	� Generators that produce OpenAPI specs, persistence mappings, repositories, controllers and
other infrastructure code. They can be used as-is or extended for your organization.

4.	Maven-based build integration
	 �A Maven plugin that runs generators as part of your build, keeping model and code aligned
without extra scripts.

Internally, the DSL is transformed into a simple, generator-friendly representation that avoids extra
runtime framework dependencies.

THE PROBLEM

WHAT JOINEDWORKZ IS

Model-driven generation for
APIs and backend systems

	 Executable architecture decisions
	� Architecture rules move from documents into
generators. Every new project and feature
automatically applies the same patterns.

	 Consistent APIs and persistence
	 �Shared models and generators ensure

similar structures across services, making
integration, operations and cross-team work
more predictable.

	 Faster project start
	� New services start from a generated structure
that already follows your standards, instead
of a manually assembled boilerplate.

	 Better onboarding and transparency
	 �The model gives a compact overview of
entities and APIs. Because code is generated
from this model, the overview stays aligned
with the implementation.

	 Reduced risk of tool lock-in
	 �Generated code is normal project code. It

can be checked in, reviewed, refactored
and maintained even if you decide to stop
regenerating.

JoinedWorkz is explicit about who owns what:

Generators typically own
	 Persistence mappings and repository patterns
	 API contracts and controller skeletons
	 Integration points and cross-cutting concerns

Teams always own
	 Business services and domain-specific logic
	 Workflows, orchestration and project-specific refinements
	 The decision when to regenerate and when to take over code manually

Generators standardize the repetitive, architecture-heavy parts. The domain logic where teams
need freedom remains hand-written.

1.	�Model: Describe entities, persistence aspects, APIs and controllers in the DSL, using the
modeling studio and your usual Git workflow.

2.	�Transform & generate: Transform the DSL into an internal representation and run generators
that emit OpenAPI specs, repositories, controllers and supporting code.

3.	�Build & evolve: Integrate generation into your Maven build. Treat generators as versioned
modules that evolve together with your architecture.

Typical adoption starts with a focused use case (e.g. one service), a first custom generator and a
pilot project. From there, patterns and generators are rolled out to additional systems.

If you want to explore model-driven generation for your APIs and backend systems:
1.	Review the documentation and examples.
2.	Identify a realistic pilot area (one service or domain).
3.	Discuss how a first generator and project rollout could look in your context.

 https://joinedsystems.eu karl.hoenninger@joinedsystems.eu https://joinedworkz.org

BENEFITS FOR YOUR ORGANIZATION

GOVERNANCE AND DEVELOPER AUTONOMY

HOW IT WORKS (IN PRACTICE)

NEXT STEPS & CONTACT

