Standardize persistence and APIs
while keeping developers in full control.

J Oi n edWo rkz JoinedWorkz is a model-driven toolchain that
lets your teams describe persistence, APls and
controllers in a domain-specific language (DSL) and
generate consistent, standard-compliant code —
while keeping business logic fully in the hands of
developers.

Model-driven generation for
APls and backend systems

THE PROBLEM

In larger organizations with several teams and J Guidelines not consistently applied:
services, the same issues keep appearing: Architecture rules live in Confluence or
J Architecture drift: internal portals, but under time pressure they

Each team interprets guidelines differently. are partially ignored or interpreted loosely.

Over time, patterns diverge and systems API-first initiatives that stall:
become harder to maintain. OpenAPI specs and documentation drift away

Repetitive boilerplate: from the implementation and lose trust.

Persistence, APIs and controller layers are Slow onboarding:

implemented again and again, with only minor New developers struggle to understand how

variations. entities, APIs and conventions fit together
across services.

WHAT JOINEDWORKZ IS

JoinedWorkz is a model-driven generation toolchain for APls and backend systems with four main
building blocks:

1. Textual DSL
A domain-specific language to describe domain entities, persistence aspects, APIs and
controllers in a Git-friendly, reviewable form.

. Standalone modeling studio
A dedicated modeling tool that runs alongside your IDE of choice, used to edit, navigate and
validate models.

. Standard and custom generators
Generators that produce OpenAPI specs, persistence mappings, repositories, controllers and
other infrastructure code. They can be used as-is or extended for your organization.

. Maven-based build integration
A Maven plugin that runs generators as part of your build, keeping model and code aligned
without extra scripts.

Internally, the DSL is transformed into a simple, generator-friendly representation that avoids extra
runtime framework dependencies.




BENEFITS FOR YOUR ORGANIZATION

J Executable architecture decisions J Better onboarding and transparency
Architecture rules move from documents into The model gives a compact overview of
generators. Every new project and feature entities and APls. Because code is generated
automatically applies the same patterns. from this model, the overview stays aligned

Consistent APIs and persistence with the implementation.

Shared models and generators ensure Reduced risk of tool lock-in

similar structures across services, making Generated code is normal project code. It
integration, operations and cross-team work can be checked in, reviewed, refactored
more predictable. and maintained even if you decide to stop

Faster project start regenerating.

New services start from a generated structure
that already follows your standards, instead
of a manually assembled boilerplate.

GOVERNANCE AND DEVELOPER AUTONOMY

JoinedWorkz is explicit about who owns what:

Generators typically own

J Persistence mappings and repository patterns
§ API contracts and controller skeletons

J Integration points and cross-cutting concerns

Teams always own

J Business services and domain-specific logic

P Workflows, orchestration and project-specific refinements

J The decision when to regenerate and when to take over code manually

Generators standardize the repetitive, architecture-heavy parts. The domain logic where teams
need freedom remains hand-written.

HOW IT WORKS (IN PRACTICE)

1. Model: Describe entities, persistence aspects, APIs and controllers in the DSL, using the
modeling studio and your usual Git workflow.

2. Transform & generate: Transform the DSL into an internal representation and run generators
that emit OpenAPI specs, repositories, controllers and supporting code.

3. Build & evolve: Integrate generation into your Maven build. Treat generators as versioned
modules that evolve together with your architecture.

Typical adoption starts with a focused use case (e.g. one service), a first custom generator and a
pilot project. From there, patterns and generators are rolled out to additional systems.

NEXT STEPS & CONTACT

If you want to explore model-driven generation for your APIs and backend systems:
1. Review the documentation and examples.

2. Identify a realistic pilot area (one service or domain).

3. Discuss how a first generator and project rollout could look in your context.

@ https://joinedsystems.eu X karl.hoenninger@joinedsystems.eu @https://joinedworkz.org






